Influence of density and temperature on the microscopic structure and the segmental relaxation of polybutadiene.
نویسندگان
چکیده
We investigate the influence of temperature and density on the local structure and the dynamics of polybutadiene by controlling both hydrostatic pressure and temperature in polarized neutron diffraction experiments on deuterated polybutadiene and in inelastic incoherent scattering experiments on protonated polybutadiene. We observe that the static structure factor S(Q) does not change along macroscopic isochores. This behavior is contrary to the relaxations observed on the nanosecond and picosecond time scales and viewed by the dynamic incoherent scattering law S(Q,omega), which differ strongly along the same thermodynamic path. We conclude that the static behavior, i.e., S(Q), is dominated by macroscopic density changes, similar to the vibrational excitations in the meV range. However, the relaxation dynamics is more sensitive to thermal energy changes. This is confirmed by the finding that lines of identical relaxation behavior (in time, shape, and Q dependence), isochrones on the 10(-9) sec time scale, clearly cross the constant density lines in the (P,T) plane. Concerning S(Q), we can reasonably relate the variation of the main-peak position to the average neighbor chain distance and deduce crude microscopic thermal expansion and compressibility coefficients. In the low-Q regime, the observed pressure and temperature variation of S(Q) exceeds the compressibility contribution and suggests the existence of additional scattering, which might originate from structural correlations arising at higher temperature and low pressure.
منابع مشابه
New insight into relaxation dynamics of an epoxy/hydroxy functionalized polybutadiene from dielectric and mechanical spectroscopy studies
Dielectric and mechanical spectroscopy methods have been employed to describe the temperature dependencies of the segmental and macromolecular relaxation rates in epoxy/hydroxy functionalized polybutadiene. Dielectric studies on the dynamics of segments of the polymer as well as the mobility of small ions trapped in the system have been carried out both as a function of temperature and pressure...
متن کاملKinetic Study and Thermal Decomposition Behavior of Magnesium-Sodium Nitrate Based on Hydroxyl-Terminated Polybutadiene
This paper has been utilizing the simultaneous ThermoGravimetric analysis and Differential Scanning Calorimetry (TG–DSC) to investigate the thermal decomposition of magnesium-sodium nitrate pyrotechnic composition based HTPB resin. The thermal behaviors of different samples with various fuel-oxidizer ratio contents were determined. Decomposition kinetic was investigated by evaluating the in...
متن کاملSol-Gel Synthesis and Piezoelectric and Structural Properties of Zr –rich PZT Nanoparticles
Lead zirconate titanate (PZT) nanopowders with spherical-shaped morphology, perovskite structure and an average size of 20 nm were successfully synthesized. The prepared PZT nanopowders were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray (EDS) and Transmission electron microscopy (TEM) technique. Single-...
متن کاملSynthesis of Polybutadiene Nanoparticles via Emulsion Polymerization: Effect of Reaction Temperature on the Polymer Microstructure, Particle Size and Reaction Kinetics
Polybutadiene nanoparticles were synthesized via batch emulsion polymerization of butadiene in the presence of potassium persulfate, disproportionate rosinate potassium cation and t-dodecyl mercaptane as initiator, emulsifier and chain transfer agent, respectively. Polymerization reaction was performed at different temperatures (60, 70 and 80 °C). Conversion was measured at the various time int...
متن کاملInfluence of Different Foaming Conditions on the Mechanical, Physical, and Structural Properties of Polypropylene Foam
In this article, the effects of different foam production times and temperatures on the mechanical, physical, and structural properties of polypropylene (PP) foam has been investigated. The microcellular PP foams were carried out using supercritical carbon dioxide (sc-CO2) as a physical foaming agent in a batch process. The samples were placed in a pressure vessel and were saturated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 67 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2003